Colloidal Silver Nanoparticles Obtained via Radiolysis: Synthesis Optimization and Antibacterial Properties
نویسندگان
چکیده
Silver nanoparticles (AgNPs) with broad-spectrum antimicrobial properties are gaining increasing interest in fighting multidrug-resistant bacteria. Herein, we describe the synthesis of AgNPs, stabilized by polyvinyl alcohol (PVA), high purity and homogeneous sizes, using radiolysis. Solvated electrons reducing radicals induced from solvent radiolysis no other chemical agents needed to reduce metal ions. Another advantage this method is that it leads sterile colloidal suspensions, which can be directly used for medical applications. We systematically investigated effect silver salt precursor on optical properties, particle size, morphology resulting AgNPs. With Ag2SO4 precursor, AgNPs displayed a narrow size distribution (20 ± 2 nm). In contrast, AgNO3 AgClO4 precursors lead inhomogeneous various shapes. Moreover, optimized synthesized were stable upon storage water phosphate-buffered saline (PBS) very effective inhibiting growth Staphylococcus aureus (S. aureus) at concentration 0.6 μg·mL−1 while completely eradicating 5.6 μg·mL−1. When compared prepared strategies, remarkable bactericidal ability against S. produced here opens up new perspectives further applications medicine, cosmetics, food industry, or elaborating antibacterial surfaces devices.
منابع مشابه
Investigation of antibacterial properties silver nanoparticles prepared via green method
UNLABELLED BACKGROUND This study aims to investigate the influence of different stirring times on antibacterial activity of silver nanoparticles in polyethylene glycol (PEG) suspension. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using green agents, polyethylene glycol (PEG) under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken...
متن کاملLanthania Colloidal Nanoparticles: Hydrothermal Synthesis, Structural, and Rheological Properties
In this work, for the first time, the rheological properties of nanofluids of lanthania nanoparticles (NPs) in ethylene glycol (EG) as functions of shear rate, volume fraction, and temperature were measured. The results showed that both EG and the nanofluids behave as non-Newtonian fluids at lower shear rates and transform to Newtonian fluids at higher shear rates. The values of viscosity ...
متن کاملMicrowave-Assisted Synthesis of kappa-Carrageenan Beads Containing Silver Nanoparticles with Dye Adsorption and Antibacterial Properties
In this work, we used a simple and totally green method for synthesizing silver nanoparticles using kappa-carrageenan as reducing and stabilizing agent. The beads were prepared in aqueous medium by microwave heating, and then followed by cross-linking with K+ cations without using any additional toxic and expensive chemical agents. The preparation method of the carrageenan-based beads is easy, ...
متن کاملSynthesis and characterization of silver nanoparticles for antibacterial activity
We consider of the antimicrobial activity on the Ag nanoparticles(Ag NPs) aqueous solutions, which was prepared using a stabilizer, such as poly(N vinyl 2 pyrrolidone PVP , for Staphylococcus aureus) S aureus and Escherichia coli E coli by measuring the minimum inhibitory concentration MIC . Antimicrobial effect of Ag NPs for S aureus and E coli was investigated using disk diffusion method Also...
متن کاملSynthesis of silver nanoparticles and their antibacterial activity
In study, spherical Silver nanoparticles (SNPs) were synthesized by chemical reduction method from a metal precursor silver nitrate in presence of an anionic surfactant and strong reducing agent. In this experimental work, SNPs are synthesized in presence of different concentration of stabilizing agent and effect of stabilizing agent on size distribution of SNPs have been observed. Further anti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pharmaceutics
سال: 2023
ISSN: ['1999-4923']
DOI: https://doi.org/10.3390/pharmaceutics15071787